Question			Marking details	Marks Available	
1	(a)		Acceleration \propto displacement [from a fixed point] (1) and directed towards a fixed point (1) Or $a = [-]\omega^2 x$ (1); - sign and defined a and x , ω^2 a constant(1)	2	
	<i>(b)</i>	(i)	$T = 2\pi \sqrt{\frac{m}{k}}$ [or by impl.](1)		
			$T^2 = 4\pi^2 \frac{m}{k}$, i.e. correct squaring [or by impl.](1)		
			m = 0.127 kg(1)	3	
		(ii)	$\omega \left[= \frac{2\pi}{T} \right] = \frac{2\pi}{0.42 \text{ s}} \checkmark [= 14.96 \text{ [rad] s}^{-1}]$	1	
	(c)	(i) (ii)	$v_{\text{max}} = \omega A \ (\text{subs})(1) = 0.194 \text{ m s}^{-1} \ [\text{accept } 0.19 \text{ or } 0.20] \ (1)$ $a_{\text{max}} = [-]\omega^2 A \ (\text{subs})(1) = 2.91 \text{ m s}^{-2} \ (1)$ [no penalty for minus sign in answer; no 2^{nd} penalty for 10^2 error]	2 2	
	(d)	(i) (ii)	$\begin{array}{c} {}^{T}\!\!\!/_{4} \text{ or } 0.105 \text{ s} \\ \textbf{Either} \\ a = [-] 2.91 \sin \omega t (1) [\text{ or impl.}] \\ \omega t = \sin^{-1}\!\left(\frac{2.9}{2.91}\right) (1) [\text{ or impl.}] \\ t = 0.054 \text{ s} (1) \end{array} \qquad \begin{array}{c} \textbf{or} \\ a = -\omega^{2}x \rightarrow x = 0.0094 \text{ m} (1) \\ 0.0094 = 0.13 \sin \omega t (\textbf{subs}) (1) \\ t = 0.054 \text{ s} (1) \end{array}$	1	
			$[-0.054 \text{ s loses } 2^{\text{nd}} \text{ mark, or equivalent wrong sector slip, e.g.}$ 4.2 - 0.054 or even 2.1 - 0.054 etc.]	3	
				[14]	
2	(a)		$p\left[=\frac{h}{\lambda}\right] = \frac{6.63 \times 10^{-34} \text{ J s}}{620 \times 10^{-9} \text{ m}} (\checkmark) [= 1.07 \times 10^{-27} \text{ kg m s}^{-1}]$	1	
	(b)		$1.1 \times 10^{-27} = [\pm] \ 1.1 \times 10^{-27} + mv \ [i.e. \ accept \ incorrect \ sign] \ (1)$ 2.2 × 10 ⁻²⁷ = 1.67 × 10 ⁻²⁷ v (1) v = 1.28 m s ⁻¹ (1)		
			$[mv = 1.1 \times 10^{-27} \rightarrow v = 0.64 \text{ m s}^{-1} - 1 \text{ mark only}]$	3	
	(c)	(i)	more energy after collision (1) since photon energies are the same / energy increased by hydrogen KE or $\frac{1}{2}mv^2$ (1)	2	
		(ii)	reflected photon has longer wavelength or red shift occurs [or converse argument or frequency argument]	1	
				[7]	
				ι'Ι	

PH4 Mark Scheme – January 2010

Question			Marking details		Marks Available
3	(a)		$pV = nRT (\mathbf{subs})(1)$ $n = \frac{60 \times 10^3 \times 0.05}{8.31 \times 278} (1) [=1.2986]$	2	
	(b)	(i)	Either $p = \frac{1}{3}\rho \overline{c^2} (1)^*$ $\rho = \frac{m}{V} \text{ or } \frac{0.171}{0.05} (1)$ $c_{\text{rms}} = 229 \text{ m s}^{-1} (1)$ * Mark lost for incorrect substitutivitation.	or $pV = \frac{1}{3} Nm c^{2}$ (1) $v = 0.05 \text{ m}^{3}$ and $Nm = 0.171$ (1) $c_{\text{rms}} = 229 \text{ m s}^{-1}$ (1) on (e.g. of ρ) unless final root	3
		(ii) Division of <i>m</i> by 1.3 (1) Molar mass = $0.132 \text{ kg} / 132 \text{ g} ((\text{unit})) (1)$		it)) (1)	2
					[7]
4.	(a) (b)	(i)	$\Delta U - \underline{\text{change}} / \underline{\text{increase}} \text{ in internal energy}$ $Q - Heat \text{ supplied } \underline{\text{to the gas /system}}$ $W - Work \underline{\text{done by the gas / system}}$ Marking - all <i>italic</i> terms (1); all <u>underlined</u> terms (1) $W = p\Delta V \text{ or area under graph (1)}$		2
		(1)	$= 60\ 000 \times 50 \times 10^{-3}$ = 3\ 000 J (1)		2
		(ii)	Use of ΔT or $U_2 - U_1(1)$ $\Delta U = 4500 \text{ J}(1)$		2
	(c)	(i)	0		1
		(ii)	Temperature decreases / gas cools Heat flows out / Q –ve (1) [not 'de		2
	(d)	(i)	Returns to same temperature / poir [or internal energy depends only o	1 · · · · · · · · · · · · · · · · · · ·	1
		(ii)	attempt at closed area or AB – CD W [= 20 000 × 0.05] = 1000 J (1) Q = 1000 J (1)	(1) [or by impl.]	3
			$\mathcal{L} = 1000 \text{ J} (1)$		[13]

PH5 W2010

Q2.

- a) The half life is the time taken for half the nuclei to decay.
- b) Lambda = ln2/half life = 0.025 per year or 7.85e-10 per second
- c) 0.05g/137g = number of moles
 Number of moles x Avogadros number = number of atoms = 2.197e20
 A = lambda*N = 1.72e11Bq
- d) 1.7MeV per decay
 1.72e11 decays per second
 2.924e11MeV per second
 2.924e17eV per second
 Divide by e
 0.047W or 47mW is this correct? Online i only see microwatts as typical powers for pacemakers. Or does only a fraction of the radioactive decay energy reach the circuit?

e) alpha emitter less suitable as alpha particles are larger and therefore more prone to absorption by surrounding human tissue – cell mutation – cancer. Also alpha particles can end up heating the pacemaker casing rather than powering the device.

Question			Marking details	Marks Available
3	(a)		$ \underbrace{ \begin{pmatrix} 2 \\ -1 \end{pmatrix} H}_{(1)}^{2} H \rightarrow \underbrace{ \begin{pmatrix} 4 \\ -2 \end{pmatrix} He}_{(1)}^{4} He + \underbrace{ \begin{pmatrix} 0 \\ -1 \end{pmatrix}}_{(1)}^{2} n $	2
	<i>(b)</i>		$P = \frac{E}{t} \text{ or watt} = J \text{ s}^{-1} (1)$	
			confinement time = $\frac{E}{P}$: $\therefore \frac{J}{J s^{-1}} = s(1)$	2
	(c)		High temperature High density \rightarrow need fast particles to overcome repulsion (1) \rightarrow more ions / particles means more reactions / collisions [\therefore more energy out] (1)Long time \rightarrow more time means more reactions / collisions 	2
	(d)		[\therefore more energy out] (1) Along magnetic field lines \rightarrow no force [or constant v] (1)	3
	()		\perp^{r} to B , experience a force [or F = Bqv] (1), at right angles (to v and B) giving circular motion [accept: gives centripetal force](1). Constant velocity (along B field) combined with circular motion	
			gives a spiral [or helix] (1)	4
	(e)		 Any 3 × (1) from 5: abundance – plenty for at least 1000 years [or similar](✓) safety – cannot get out of control because there is only a small amount of fuel (1) environment – no CO₂ / greenhouse emissions (✓) radioactive for only ~ 50 years [accept: no radioactive waste](✓) 	
			output – large amount of energy from small amount of fuel (\checkmark)	3
	Ø	(i)	0 = 4(m)v + (m)w(1) [or 5mu = 4mv + mw] neutron speed = 4 × helium speed (1) [implies 1 st mark] KE = $\frac{1}{2}mv^2$ (1) [or by impl]	
			$\frac{1}{2} \times 4mw^2 = 2mw^2$ and $\frac{1}{2} \times m(4w^2) = 8mw^2(1)$	4
			[Accept: showing that momentum is conserved with the data supplied for full marks]	
		(ii)	 pass through walls ✓ take away KE ✓ 	
			 unaffected by B-field ✓ any 2 × (1) provide heating outside torus ✓ 	2
			• produce β -emitters [accept r/a particles] \checkmark	[20]